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ON QUASI-MONTE CARLO SIMULATION 
OF STOCHASTIC DIFFERENTIAL EQUATIONS 

NORBERT HOFMANN AND PETER MATHE 

ABSTRACT. In a number of problems of mathematical physics and other fields 
stochastic differential equations are used to model certain phenomena. Often 
the solution of those problems can be obtained as a functional of the solution 
of some specific stochastic differential equation. Then we may use the idea of 
weak approximation to carry out numerical simulation. 

We analyze some complexity issues for a class of linear stochastic differential 
equations (Langevin type), which can be given by 

dXt =-oaXtdt + 13(t)dWt, Xo 0, 

where oa > 0 and /3: [0, T] -* R. It turns out that for a class of input data 
which are not more than Lipschitz continuous the explicit Euler scheme gives 
rise to an optimal (by order) numerical method. 

Then we study numerical phenomena which occur when switching from 
(real) Monte Carlo simulation to quasi-Monte Carlo simulation, which is the 
case when we carry out the simulation on computers. It will easily be seen that 
completely uniformly distributed sequences yield good substitutes for random 
variates, while not all uniformly distributed (mod 1) sequences are suited. In 
fact we provide necessary conditions on a sequence in order to serve quasi- 
Monte Carlo purposes. This condition is expressed in terms of the measure of 
well-distributions. Numerical examples complement the theoretical analysis. 

1. INTRODUCTION 

The purpose of this paper is the study of weak solutions of Ito stochastic differ- 
ential equations which are usually written as 

ot ot 
(1.1) Xt = Xo + j a(s, X,)ds + j (s, X,)dWs, 

where the first summand in (1.1) is the initial value, the second one represents 
the drift and the third one, which shall be understood as integral in the sense of 
Ito, driven by some Brownian motion { W, 0 < s < T}, the diffusion of the 
stochastic process which solves equation (1.1). Here the functions a and a have to 
fulfill certain regularity conditions in order to ensure existence and uniqueness of 
solutions. 

The numerical treatment of stochastic differential equations consists of two ma- 
jor branches. First, in case the driving Brownian motion is given, one may attempt 
to solve the corresponding equation by use of some (deterministic) scheme. The cor- 
responding result will then be called strong solution. In a second approach one may 
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think of the given stochastic differential equation as a defining relation and some 
functional of the solution has a certain meaning only. The latter situation is met 
often in connection with partial differential equations, when we may represent the 
solution of some boundary value problem in terms of a functional of some stochastic 
differential equation. Thus we aim at approximating the distribution of a stochastic 
differential equation rather than finding solutions to some particular realization. In 
this context one may speak of weak solutions of stochastic differential equations. 
If this is the case, then we may simulate the given stochastic differential equation; 
thus we are free to propose random mechanisms which are distributed according to 
the law of the solution of the stochastic differential equation. The natural way is 
to discretize the stochastic differential equation in time. Then, knowing that the 
increments of the Brownian motion are independent random normal variables with 
known variance, a numerical scheme is applied to find approximate values of the 
sample path step by step at the discretization points. It is well known that we do 
not need to simulate normal variates if we are only interested in weak solutions. 
Random variables which are distributed uniformly on the unit interval may serve 
the same purpose. It is even more surprising that discrete variables may be used, 
see [4, 6, 10]. 

In practice, when simulating stochastic differential equations at the computer, 
pseudo-random numbers are used instead of random ones. Pseudo-random num- 
bers are deterministic and numerical methods based on the use of such deterministic 
analogs are often called quasi-Monte Carlo methods. The mathematical theory of 
quasi-Monte Carlo simulation is well developed for numerical integration. The 
heart of this theory is the Koksma-Hlawka-inequality, which provides an error es- 
timate for a quadrature formula based on quasi-random numbers in terms of the 
discrepancy of this sequence of numbers. Especially it follows that those sequences 
fit best which are of low discrepancy. The error estimate for a carefully chosen low- 
discrepancy sequence is even superior to the one provided by crude Monte Carlo; 
for a detailed discussion see [11], a more recent exposition is [12]. 

The purpose of this paper can roughly be expressed in the question: Does this 
carry over to the simulation of stochastic differential equations? In other words, 
may we use low-discrepancy sequences instead of random variables, and if this is 
the case, may we improve the error estimate as this was true for the integration 
problem? It is well known, that we may proceed from numerical integration to the 
solution of Fredholm integral equations, see [3]. 

Below we are going to prove some negative results by providing necessary con- 
ditions a deterministic sequence of numbers has to fulfill in order to serve for a 
quasi-Monte Carlo simulation. Especially we prove that low-discrepancy points 
must not be used. This will also be transparent by simulation results given below. 

Moreover, we show that restricting uniformly (mod 1) distributed sequences to 
those which are completely uniformly distributed (CUD), yields sequences which 
may serve for quasi-Monte Carlo simulation. 

The next section formalizes the previous considerations. 

2. PROBLEM FORMULATION 

The mathematical analysis of the quasi-Monte Carlo simulation will be carried 
out for the following family of stochastic differential equations. Let {Wt, O < t < 
T} be a standard Brownian motion and consider the (one-dimensional) stochastic 
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differential equation 

(2.1) dXt =-aXtdt + 3(t)dWt, Xo :=O, 

for parameters a > 0 and functions /3: [0, T] ---I R. Thus equations (2.1) are 
obtained from (1.1) by specifying 

a(s,x):=ax, xXER and o(s,x) :=i3(s), O < <st. 

These stochastic differential equations are of Langevin type, the solution of which 
can be given analytically; namely, see e.g. [5], we have 

rt 

(2.2) Xt =10 ec(t-s)3(s)dWs, t > 0. 

We aim at approximating the second moment at the final time point T, i.e., 

(EXT 12)l/2 = (, e-2a(T-s)L3(S)12ds) 

We assume T = 1 for simplicity. The exact solution is a function, say S(a,/3), of 
the data (al,3); see equation (2.2), that is 

S(a,/3) := ( e-2a(1-s) /3(s) 2ds) 

The description of the mathematical problem will be complete after specifying the 
possible input. The problem elements under consideration, i.e., the class of equa- 
tions (2.1) is described by restrictions on the values of a and functions /3: [0, 1] -) R. 
For a, b, L > 0, we let 

X(a, b, L) : (a,), O < aO < a, max 13(s)I < b, 13(s) -/3(t)I < Lls -tl 

hence the crucial restriction is the Lipschitz continuity of /, the class of possible 
problem elements. If we equip X(a, b, L) with metric 

p((a,/3), (a',/3')) := la - a'1 + sup 13(s) - 3'(s)1, 
sG[0,1] 

then the set of problem elements admits a countable everywhere dense subset (it is 
separable). 

The mapping S: X(a, b, L) -E R is sometimes called solution operator. It is 
readily checked that this operator acts continuously on (X(a, b, L), p). 

Next we specify the admissible numerical schemes to treat stochastic differential 
equations from type (2.1). To be precise let 

(2.3) it(X(a, b, L), R) :={u(a, /3) = p(a, /(t), ... (tn)) 

n E N, tl, . .. , tn E [O, 1], (o: Rnt -+ 3RI. 

The number n of function evaluations supplemented by the evaluation of a gives rise 
to saying that the method u in the braces in (2.3) has cardinality card(u) = n + 1. 
Thus we allow any method based on evaluation of 3 at some time discretization 
points. The final methods, which shall be Monte Carlo methods are derived from 
this class it(X(a, b, L), R) in Section 3. 

Below we shall analyze the Euler scheme with respect to an equidistant time 
discretization, N steps of step size 1/N each, in more detail. The definition will 
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be given for any realization of the Brownian motion in (2.1). That is, we obtain a 
recursive description of the approximation Yn, n = O,.. ., N-1 as 

Yn a- Y ,n) 1 Y (24) Yn+l = -N N V/ N I = 

where }T<YO),., YN-1 are the increments I 
N := Wk+1 - Wk of the Brow- 

nian motion {Ws, 0 < s < 1}. For the purpose of simulation we observe that the 
random variables k, k = O, .. ., N - 1, are independent with common standard 
normal distribution. It is also well known, that these random variables may be re- 
placed by any other random variables having mean 0 and variance 1, without spoil- 
ing the asymptotic behavior of the approximation. So we may replace ,yo.... ., "N-1 

by x/-(1-2(o), ... I, 3(1-2(N-1), with independent uniformly distributed on [0,1] 
random variables 0,.... ., N-I . But, since we aim at studying quasi-Monte Carlo 
simulation we will replace the o0, . .N, (-1 by (deterministically from [0, 1) chosen) 
points WO,... ,i N-1 and arrive at 

(2.5) Yn+ I=Yn--aYn+?(/n3 ) 
0 

r(I=-.2Wn), n=0, ,N-1, YO=O. 

For each realization of the yo, . . ., AYN-I in equation (2.4) (or the respective choice of 
points WO, ... , WN-1 in equation (2.5)) the corresponding YN and YN are hopefully 
distributed close to the actual distribution of X1. 

In the simple situation of the model equations of the form (2.1) we can provide 
an explicit representation of the final approximants YN and YN, respectively. We 
have 

(2.6) YN = (i - ( )Nl -k 

and correspondingly 

YN= E (i N N-) )(l- 2Wk) 

For the study of the quasi-Monte Carlo simulation we assume that we are given 
an infinite sequence of points (wi) 0 C [0, 1) from the very beginning and that 
we sequentially take elements whenever they are needed. Thus we are looking 
for multi-purpose sequences, working for any number of time steps chosen. The 
analysis would be different, if we would fit the sequence to a prescribed time dis- 
cretization. 

To complete the numerical scheme we will simulate the second moment by the 
sample mean of M independent copies of X1, in our case, 

M 

(2.7) EIXI l2 - -M E IYNj I,2 
j==1 

or for the quasi-Monte Carlo simulation 

M 

j=1 
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respectively, where the j-th copy of YN shall be obtained by replacing Wk by 
(), k = 0,..., N - 1, which are obtained from the original sequence (i)? 

by letting w() W(j-1)N?k, which means 

(2.8) -E4 N I S) - 2wk )EN 

j=1 j . k1 

represents the mean of M trajectories from the Euler scheme YN YN (a, /3) with 
N equidistant time points in the quasi-Monte Carlo simulation. 

This is made precise below. 

3. MONTE CARLO SIMULATION 

Most texts on the Monte Carlo simulation to obtain weak approximations to 
equations (1.1) provide schemes of different order of weak approximation. In general 
there is a lack of optimality issues, i.e., there are no indications on lower estimates. 
In the present context, that is, dealing with such simple equations as (2.1), the 
optimal order on Lipschitz continuous input can be given. To do this we have 
to describe the class of possible input functions as well as admissible numerical 
schemes. 

Since possible input was described above we shall turn to the admissible stochas- 
tic numerical schemes, which in fact are Monte Carlo methods, each realization of 
which shall belong to class ?t(X(a, b, L), R) introduced by (2.3). Thus such a Monte 
Carlo method shall be a random element taking values in ?t(X(a, b, L), R). It is im- 
portant to note that we have only deterministic partial information on /3 which 
comes from the deterministic time discretization. Moreover we assume that for any 
given data (ae,3) the mapping w -* u (ae, 3) is measurable. To complete the de- 
scription of the Monte Carlo scheme we note that any random mechanism driving 
w -* u (Ue, a3) is allowed. This will be given by a probability space [Q, F, P]. 

To be precise, a Monte Carlo method P of cardinality n is given as a triple 
P= ([Q,IF,P],u,rn) where 

1. [Q, Y, P] is a probability space. 
2. For any data (ae, /3) E X(a, b, L) the mapping w -> u,(ae, /3) E ?t(X(a, b, L), R) 

is a real random variable where we assume that any evaluation of the data is 
deterministic. 

3. Each realization uw has cardinality at most n. 

Remark 3.1. The introduction of Monte Carlo methods as given above is presented 
in [9]. It turns out to be rich enough to include all known methods, not only 
within the treatment of stochastic differential equations, but in a fairly general 
context. However, within the present context information of the data is assumed to 
be deterministic, which corresponds to a deterministic choice of time discretization. 
This is customary for treating stochastic differential equations. 

Let us also mention that we allow fixed cardinality only. In a more general 
framework varying cardinality would also be of interest. We shall not turn to that 
problem. 
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The (global) error of such a Monte Carlo method P (for the given solution 
operator S) shall be measured by 

X \ ~~~~~~~~1/2 
e(S,P) sup (j S(a,) - uw(a, c)2 dP(w)) 

(a,OB)X(a,b,L)Q 

This is the usual mean squared error customary for Monte Carlo methods. Our 
main goal is to minimize this Monte Carlo error with respect to a choice of Monte 
Carlo methods P with prescribed cardinality card(P) at most n - 1, thus we study 

e"7 (S, it) :=inf {e (S, P), card (P) < n-1}. 

We are now in a position to provide the optimal rate of convergence within the 
present context of equations (2.1). 

Theorem 3.2. There are constants C > c > 0, such that 
1 1 

Proof. The upper bound shall be obtained by using the Euler scheme with N 
equidistant time points as provided by the right-hand side in (2.7), which is easily 
seen to be a Monte Carlo method, obtained from a basic one, say 1P by independent 
sampling. This Monte Carlo method 1', provided in equation (2.4), can be given 
by P = ([Q,jF,P],u,N) as 

1. Q = RN equipped with the product a-algebra yN and the corresponding 
product probability AT(O, 1)N, describing the choice of N independent stan- 
dard normal variates. 

2. For given (a, v3) the mapping u is given from equation (2.6). 
3. The equidistant design consists of N points tk :=k, k = 0,..., N-1. N' 

Using the notation from the previous Section 2 the error of P can be decomposed 
into the bias and the statistical error to arrive at 

(3.1) (E (E~X1~2)l/2 - (i1 M 2) 1/2 )1/2 

< - (EEl )EIX 12)1/2 / 1 

? (El (EIN12)1/2 - (1 21 1/2 2)1 

The first summand in (3.1) is controlled by the step size of the Euler scheme and is 
known to be of the order 1/N. We are left to show that this bound is uniform over 
input data from X(a, b, L). First we observe that YN also admits a representation 
as an Ito integral of some step function fN which is piecewise constant on intervals 
[k/N, (k ? 1)/N), taking values (1 - N)N((N 1)/N k/N)flQN) there. Let us for a 
moment denote the actual integrand in equation (2.2) by 

f(s) = -a(-)d 

With this notation an application of the triangle inequality provides 

I(EIXi2)</2 I (EIXNI2)l/2 ? (E| j(f(s)-fN(S))dWs 2) 
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Employing the basic isometry for Ito integrals we obtain 

| (EIX1I2)/2 -(EIYNl2)l/2 
< max max If (S) -fN(S)| 

k sG[k/N,(k+ 1)/N) 

(3.2) 
< ax mmax le-a(1-s)f(s) -e-a(l-s)f(k/N)I 

k s G[k/N, (k+1) /N) 

(3.3) 

? ax m ax Cl-a(-s)3(k/) - (i - (kI). 
k sGe[k/N,( k+ l , N, /) N(N-) 

From this standard manipulation we obtain an upper estimate of the form 

| 12)1/2 _ N 12)1/21 < L + Cba (EX(EExi )N/-- N C- 

for some universal constant C < oc and N > No, where the first summand 
bounds (3.2) and the second the expression in (3.3). 

The second summand in (3.1), which represents the Monte Carlo error of the 

crude sampling is bounded by the dispersion of the integrand, which is (ElN 2) 1/, 

divided by M. This implies 

(3.4) (E (EIX1 2)1/ -(i Y i ) 12 1 C(a, b, L) + 

for N > No. 
Let us mention explicitly that the information on ,3 does not change during the 

process of sampling, it is always at the time points previously chosen. The choice 
N := n and M:= n2 in estimate (3.4) provides the required upper estimate in 
Theorem 3.2. 

We turn to the lower bound. It is easily obtained for equations of the type (2.1), 
since there is an explicit representation of the solution in terms of (a, 3) E X(a, b, L). 
To this end let P be any Monte Carlo method of cardinality less than n. Let 
(to, ... , tn-1) be the time discretization used by P. We denote by Ak := [tk, tk+l), 

k = O, ..., n-1 (where we put tf = 1), and let dk := tk+l-tk, k = O,.. .,n-1. 
We assume without loss of generality that mink=o,...,n-j dk > 0. 

We start our construction with some basic function p: [0, 1] -+ R+, given by 

f X if O < x < I 
_OX 2L'I 2' 1-x if I<X<1. 

2L'1 2- 

Finally we put 

1(s) := min {1, 2bL} dk0( dtk), SEAk, k=0, ..., n-1. 

The integral of this function can easily be estimated from below via 

min {1, 2bL} nj d2 > min {1, 2bL} 1 
Jks)ds> 8L dk= 8L n' 



580 NORBERT HOFMANN AND PETER MATHE 

Moreover it is seen that (a, 3) E X(a, b, L) and 
2~~~~~~~~~~~~ 

S(2) > e ]/ j(s)ds > C(a, b,L)-, 

for some constant C(a, b, L). Also the pair (a, 0) belongs to X(a, b, L), where 0 
denotes the zero function. The main observation is that the method P cannot 
distinguish between both input data, they share the same information. This yields 

e(S,P) 

I{(/ a, ) _u (a 1)/2Pg) (/S(a,)-u,( ) 
a 

P(- )1 } 

? max { (a 0)ld 1(2) d (,/ S I5 _ 10 (a 0)wd( 1)1/2 d( 

1 a- 1(a 1 / Sa / 

> S(- i3)> -C(a,b,L)- 
2 2' 2n 

completing the proof of the lower bound and of the theorem. D 

Remark 3.3. It is worth discussing the above estimate from the complexity point 
of view. Suppose we choose an Euler scheme with N steps and do the simulation 
M times. In general, for equations of the type (1.1) this requires n := N M 
computations of the functions a and a. If we have for the general case of equations 
of type (1.1) an estimate similar to (3.4), then, optimizing the choice of N and M 
to minimize the error for given values n, we end up with M - N2. In other words, 
the error can be bounded by Cn-1/3 provided we are willing to allow n evaluations 
of the input data a and a. 

It is not known whether this is optimal for some more general class of data than 
X(a, b, L). Thus the picture from Theorem 3.2 is not a final one. For the present 
purposes it is however sufficient. 

4. QUASI-MONTE CARLO SIMULATION 

We leave this brief outline of Monte Carlo simulation and turn to the main 
problem of the paper. Instead of doing (real) Monte Carlo simulation we switch to 
quasi-Monte Carlo simulation. 

For later use we briefly review the main facts concerning the quasi-Monte Carlo 
simulation for the approximate computation of integrals, see [8]. The main notion 
is the discrepancy of a point set in some unit cube. Let s be any positive natural 
number. For brevity let us denote, given any a C (0, l]8, a = (ao, .. , a.-,) by 
[0, a) the cube 

[0, a) := {x = (xo,... x ) E [0, l]', xi < ai, i = O,... ,s -1}. 

For any given collection of M points (xj)jm' in [0, 1)5 the quantity 

M ((X 1) : sup 
xi, 

xi [0,a), j = 
1,...,M} 

Dm((j)M aE(0,1]s AJa denotes the *-discrepancy. 
Observe that we suppress the dependence on s, since this will be clear from the 

sequence under consideration. 
This concept has far reaching applications. We recall the following 
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Definition 4.1. An infinite sequence of points is said to be uniformly distributed 
(mod 1), if the sequence of the *-discrepancies of the initial segments tends to 0. 

Such sequences of points may be useful for the approximate computation of in- 
tegrals. In fact, if a sequence (xi) "- C [0, 1)' is uniformly distributed (mod 1), 

then M j='1 f (xJ) tends to f[o j]s f (x)dx for any Riemann integrable function on 
[0, 1]'. We note that the *-discrepancy can be seen as the uniform error bound 
for the integration of step functions X[O,a) by a quadrature formula of the type 
M Z =1 X[O,a) (xJ). This bound extends to functions of bounded variation (in the 
sense of Hardy-Krause). This is known as the Koksma-Hlawka inequality, men- 
tioned in the introduction. 

Koksma-Hlawka inequality. For any given collection of M points (xj)_ in 
[0, 1)S and any function f: [0, 1]S -+ IR of bounded variation, we have 

M 

(4.1) AZ f(xJ) I f(x)dxl 
j=1 - ,] 

s-i 

<S SE DM(xP+1--.S-l)V(P)(f( ,1,.. 1)). 
p=O 1,...,k;p 

For the complete explanation of the symbols used above we refer to [8, Ch. 2, 
?5]. There one can find further details and variations of this inequality. Since we 
shall make use of the two-dimensional case below we shall state it explicitly: 

For given M points ((si, ni))m C [0, 1)2 and integrable function f: [0, 1]2 R 
we have 

(4.2) 1 Mf ( I ) f (xly)dxdyl < D* (i)m V(l)(f(x,1)) 5 f(i m - fx D7 j= (fx ) 
:=1 

+DM * 1)}1 ()f1W)+D (((j v 1qj)) M1 V(2 )(f (X )W). 

Here V(1) denotes the (usual) variation of a function on [0,1] (with respect to the 
variable as indicated). The symbol V(2) denotes the total variation (in the sense of 
Vitali), see [8, Ch. 2, ?5]. 

First we shall return to the problem of approximating the solution S(a, 3)2 by 
expressions (2.8). We propose the following 

Definition 4.2. An infinite sequence (j)'00 C [0,1) is said to be consistent (for 
the solution operator S) if for all (a, 3) E X(a, b, L) we have 

lim lim 1E IYNj (a L)12 S( )2 
N -->ooM --+ oo Ml 

j=1 

(Here YN are defined as in (2.8).) 

Thus the following question seems to be natural: Are uniformly (mod 1) se- 
quences consistent? It turns out that this is not always the case. 

But a slightly stronger property than uniform distribution (mod 1), namely 
being completely uniformly distributed (mod 1) (often abbreviated CUD), provides 
sequences which are consistent. The original introduction of such sequences has 
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probably been given by Korobov. The importance of the latter notion has been 
realized early when simulating Markov chains, see [1]. 

Let us recall the definition, which in fact is not the usual one. But as has been 
observed by Korobov in his dissertation, 1953, the present approach which focuses 
on Monte Carlo sampling is equivalent to the original one. 

Definition 4.3. An infinite sequence (wi)?0 C [0,1) is called completely uniformly 

distributed (CUD), if for all positive s Ec N the sequence .w.. , _j=_ , which 

is defined by 

W(j) : ak =a(j-l)s+kl k= O, . .., s-1, j EN, 

is uniformly distributed (mod 1) in the s-dimensional unit cube [0, 1)S. 

Thus for any s, the choice of subsequent s-tuples yields a sequence of vectors 
uniformly distributed (mod 1). In the excellent treatment [7, 3.5 B], such sequences 
are called oc-distributed. There one can find further discussion on the randomness 
and other properties. Also, indications on explicit constructions are given. A 
thorough comparison of various types of uniformly distributed sequences is provided 
in [2]. 

For more recent references and discussion we refer to [11, 12]. The following 
result is an immediate consequence of the definition. 

Proposition 4.4. CUD sequences are consistent for S on X(a, b, L). 

Proof. It is readily checked that (ElV'N(a, 3)12) 1/2 tends to S(a, 3) if N tends to 
infinity. Thus it is enough to verify that for every fixed N the convergence 

M 

(4-3)~~~ I YNj (a U )1 EIYN(a, )1I 
j=1 

for M -+ oc is true. But it can be drawn from the representation in (2.8), that 
the left-hand side above is the average of the values of the function f: [0, 1]N R 
given by 

) I NE 
1 

- a N) 
- 

kf) ( - X ) f(o. .. ,XN-1) 1=I = 7 (i _ -)N /(k/-3(l - 2Xk) 12 

at M points (W(1),. . . . (w(M),.. , (M) ). Since the original sequence 

was supposed to be CUD, the sequence of points (a),..., )41) C [0, N)N iS 

uniformly distributed (mod 1), such that the left-hand side in (4.3) converges as 
stated. D 

Remark 4.5. Looking at the above arguments we immediately recognize that CUD 
sequences may be used for quasi-Monte Carlo simulation whenever an explicit nu- 
merical scheme is used which is weakly convergent for some class of stochastic 
differential equations. For the appropriate setup we refer to [6, 9.7] 

Since almost all (with respect to the uniform distribution on [0, I]N) sequences 
are CUD, see e.g. [8, Chapt. 3, Thm. 3.13], we also infer that almost all randomly 
chosen sequences are consistent for the solution operator S. 
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Next we turn to the problem of whether there are necessary conditions to be 
imposed on a sequence in order to be consistent for some class of problems. We 
start with the following 

Proposition 4.6. There are constants C = C(a, b, L) and N(a) E N such that 
for any infinite sequence (wi)?o C [0,1) and for all N > N(a), M E N and 

1, ... . M, we have 

IYk(aj ) I1 < CN DN (k )k= o N ((N 
I 
ak ) 

Proof. The proof is based on the Koksma-Hlawka inequality. Let N(a) 2( Fal +1), 
such that N()< 1. We fix any j, j = 1, . . . M and rewrite YN= YN as 

YN 
= 

1 
N-1 (aZ N((N-1)/N-k1N) k() 

k=O 

For N > N(a) we apply the Koksma-Hlawka inequality to the function 
( a> N((N-1) /N-X) 

f(x,y): (i-_ 0(x)(I-2y), x,yE [0,1), 

and obtain 

(4.4) 

II 
k 

f(I k,w()) - f(x,y)dxdyl 
1N- 10110 

k=0 

< DN (k/N)N- k= 0(1 ) ( f (X , 1 )) + DN (j'2) 

N I 

V( l) (f (I l, )) 

+ DN (((k/N, 4))) N 
) V( (f (x, y)) 

< 4(L + b) {DN ((klN) kj? ) + DN (Q4))) + DN (((k/N,&IP))) ) } 

< 
8(L + b) {DN (k + DN ((k/N,W2) 

where we used the easily established fact that the respective variations of f are all 
bounded by 2(L + b)/(1 - a/N(a)) < 4(L + b) to derive (4.4) and the known fact 
that the *-discrepancy of 0, N,..., N is minimal and equal to N. Taking into 
account that the double integral of f evaluates to 0, the proof can be completed. D 

To proceed we need a result which relates the discrepancy of a certain point set 
in the unit square to the marginal coordinate sequence. The following lemma is a 
variation of an argument used in the proof of Theorem 2.2 in [8]. 

Lemma 4.7. There is a natural number No, such that for all N > No and point 
sets (Wi),N=-1 C [0, 1), there is an m, 1 < m < N, for which 

i=O ~ ~ i 

mD * ( (i )if -o > NDN ( (i IN) ) , = 

Proof. For completeness we repeat the argument from [8] briefly. Since the sequence 
ND* ((i/N, Wi)iN-1) tends to infinity, see [8, Thm. 2.1], we can find No for which 
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ND*((i/N, Wi)NYi-1) > 4, N > No. Since moreover the *-discrepancy is the 
supremum over cuboids, we can find x, y E (0, 1] for which 

l#{(ilN, i), i/N < x, wi < y, i = O,. .. ,N-1} 1 > 1D* ((i/N )N-1) 

Let for N > No the number m - 1 be the greatest natural number smaller than 
xN. This yields 

# {(i1N,wj), iIN < x, wi < y, i = O,. , N- 1} 

=#{av, avi < y, i =O,1...,im-} 

Now we can conclude 

#{tWi, 'i < y, i = O, ... m-1} 

m 

N m 

> # {(i/N,wi), i/N < x, wi < y, i = 0, ..., N-1} N N 

N 
m 

> DN ((i/N,wi 1 y 
-2m N = N 

(45) > DN((i/N,)i) 1 -2m N= m 

where we used the definition of m to derive (4.5). Employing the definition of the 
*-discrepancy and multiplying by m, we obtain 

(4.6) mDj((Wi)N- 1) >N D *((i1N, i)N-o)_1. 

By our choice of No estimate (4.6) yields 

mD* ((Wi)N-t1) > DND*((iNi)No ), 

completing the proof of the lemma. D 

In order to formulate the necessary condition we shall have to use a slightly 
stronger notion than discrepancy, which is related to the concept of well distributed 
sequences. Here we start with an infinite sequence (j)?o C [0,1) and put 

fW+,Wk+i <X,i= ..IN-1 
(4.7) DN ((Wj)_o ) sup sup I # {k+i 

kEN o<x<l 

Definition 4.8. A sequence (wi)'o c [0,1) is said to be well distributed (mod 1) 
if DN ((Wai) 0) tends to 0. 

Since we are not aware of any name, we shall henceforth call DN ((Wi) 0) the 
measure of well distribution. 

It is known that there are sequences uniform (mod 1) which are not well dis- 
tributed, see again [8, Ch. 1, ?5]. The switch from uniformly (mod 1) distributed se- 
quences to well distributed ones is plausible, since in the asymptotic analysis longer 
and longer segments from the original sequence may be disregarded. Now we turn 
to the main result of this section. It provides a necessary condition on sequences 
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to allow consistency for the problem S on X(a, b, L). Recall that C = C(a, b, L) 
denotes the constant from Proposition 4.6. We have 

Theorem 4.9. For any sequence (wi)'o C [0, 1) which is consistent for S on 
X(a, b, L), we have 

(4.8) limsup NDN((Wi)'0) > b 

Remark 4.10. The above lower bound can roughly be reformulated that DN must 
not decay too fast to ensure consistency. Remember that the minimal discrepancy 
of sequences in [0, 1) is of the order log(N) see e.g. [8, Thm. 2.1], which is much N 
faster than Theorem 4.9 permits. Let us emphasize that the necessary condition 
provided in Theorem 4.9 is also necessary for any class of input data containing 
some X(a,b,L). This means that low-discrepancy sequences are not suited for 
the quasi-Monte Carlo simulation of stochastic differential equations. This is also 
supported by the computational results reported in Section 5. 

Proof of Theorem 4.9. We first observe that 

max JS(a~, 3) I S(0, b) I > b. 
((a,13) E X (a,b, L) 

Thus if (wi)?o c [0, 1) is any consistent sequence, then for N > N1 > N(a), where 
N(a) is from Proposition 4.6, there is M(N) E N such that we have 

M lYk (0,b) I> 4 
j=1 

for all M > M(N). In view of the estimate provided in Proposition 4.6, we conclude 
that for N > N1 and M > M(N), 

(4.9) N ax{D* (((X)) ) ?+ D (((k/1N, j)) )N)} > 20 

Now suppose to the contrary of (4.8) that, starting from some N > N2 we have 
NDN((wi),-0) < b . The estimate (4.9) then implies for N > max{N1,N2} 100 

and M > M(N) the inequality 

/N max D2b (k1N, Wj)) ) > 5. 

Let for any N > max {N1, N2} the number j(N) be such that the above maximum 
is attained. An application of Lemma 4.7 yields for all N > max {No, N1, N2} an 
m < N for which 

m/ D* (( (j(N))) 
N - 

> IiNDN( klN,j )k-- m k k= 4 m ND kk/ k(N)) 

b N 

?100 / 
In terms of the original sequence (wi))2?00 we provided for any N > max {No, N1, N2} 
an m(N) < N for which 

b N 
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The sequence (m(N))NfN cannot be bounded, since then the left-hand side in (4.10) 
would be bounded, while the right-hand side would tend to infinity. Thus we may 
extract an infinite sequence of numbers ml, 1 = 1, 2,..., converging to oc, for 
which 

bc VI--1Dm (Wi"o ) > 1C 

contradicting our initial assumption. This completes the proof of the theorem. D 

The theorem just proven has an immediate consequence on the measure of well 
distribution of CUD sequences. 

Corollary 4.11. There is a constant C > 0 such that for every CUD sequence 
(wi)?1o we have 

lim sup NDN ((Wi) )0) > C. 
N->oo 

But as can be seen right from the definition of CUD sequences, we have the 
stronger relation DN ((Wi ) = 1 for any such sequence (wi)` 0, since given N and 
letting s = N, the sequence must contain strings (Wk, ik+1,... , Wk+N-1) arbitrarily 
close to (0, 0, ... , 0) for arbitrarily large k. We thank the referee for pointing out 
this simple argument to the authors. 

It would indeed be interesting to have further results on the discrepancy of se- 
quences which enjoy stronger properties than being uniformly distributed (mod 1). 
A rough explanation of the phenomenon presented above is that the properties of 
being independent and having low discrepancy are contradictory. This can be made 
more precise by introducing a corresponding measure of independence, related to 
the empirical coefficients of correlation as used in statistics. 

5. NUMERICAL EXAMPLES 

The theoretical results from the previous section are accomplished by some 
typical situations as met in computer simulations. We examine the most promi- 
nent examples of low-discrepancy sequences, the Kronecker-Weyl-sequence and the 
v. d. Corput sequence. It will be transparent, that the computational results will 
tend to 0 rather than approximating the exact solution. This could also be fore- 
casted from Proposition 4.6. 

Finally we exhibit the action of the pseudo-random-number generator as imple- 
mented in the Turbo Pascal compiler. 

Example 5.1. The Kronecker-Weyl-sequence. The construction of the Kron- 
ecker-Weyl-sequence is sometimes called Diophantine approximation [8, Ch. 2, ?3]. 
For a given real number ( > 0 we let 

w)i := {},i E N, 

where {x} := x-Lxj denotes the fractional part of any real number x. It is due to 
H. Weyl, that the resultant sequence (i)?o is uniformly distributed (mod 1) (and 
also well distributed) if and only if ( was irrational. The discrepancy and measure 
of well distribution depend on number theoretic properties of (. Especially, if ( is 
a quadratic irrationality, hence has bounded partial quotients, then we have 

DN ( (Wi )N-1o) 
< N()_ < ,log(N) D*(w <L1 ? N D((Wi) co ) < N 
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for some constant C < oc. The fact that DN((wi) O) has convergence no worse 
than the *-discrepancy is easiest seen from the Erd6s-Turan inequality, see [8, 
Thm. 2.5]. Consequently, for ( = VX_ the Kronecker-Weyl-sequence must fail for 
quasi-Monte Carlo simulation. This is demonstrated in Table 1. 

TABLE 1. Numerical results obtained with the Kronecker-Weyl- 
sequence for a = 1 and different functions ,3 

2 

_ _ (t)-=1 3(t) = et 3(t) = t |3(t) = t2 

E__ _Xl_1 2 0.6321205 0.2325441 0.2642411 0.1708934 
approximate value 
(N = 50, M = N2) 0.0412733 0.0154923 0.0208595 0.0180976 
approximate value 

(N = 100, M = N2) 0.0166281 0.0061776 0.0117100 0.0106130 

Example 5.2. The v. d. Corput sequence. The following construction was 
first suggested by v. d. Corput. For any prime number p E N let 

Wi := Op(i), i E N. 

Here fpp denotes the radical inverse function which is defined as follows. We put 
pp(O) := 0 and for i > 1 with a p-adic expansion i = Ej=o ajpJ we let Sp(i) 

Ej=0 ajp-j-1, see also [8, Ch. 2, ?3]. It is clear that the elements constructed this 
way belong to the unit interval. 

It was proven by v. d. Corput, that we have 

DN )N - 1) < C log (N) 

for some constant C < ox. A careful inspection of the proof of Theorem 3.5 in 
[8] allows to extend this estimate to the measure of well distribution. Thus the 
v. d. Corput sequence provides a further example of a low-discrepancy sequence 
which additionally has a low measure of well distribution, hence it must fail for 
quasi-Monte Carlo simulation. For p = 2 this is also demonstrated in Table 2. 

TABLE 2. Numerical results obtained with the van der Corput 
sequence for a = 1 and different functions f 

| /(t)-1 |3(t) = e-t |(t) = t |(t) = t2 

EIX_12_T 0.6321205 0.2325441 0.2642411 0.1708934 
approximate value 
(N = 50, M = N2) 0.0112433 0.0042016 0.0100168 0.0087253 
approximate value 

(N = 100, M = N2) 0.0069880 0.0026074 0.0056135 0.0050400 

Example 5.3. The prn-generator from Turbo Pascal. In the following table 
we establish the results with quasi-Monte Carlo simulation using the implemented 
pseudo-random number generator from Turbo Pascal. Table 3 indicates that this 
is a possible choice of point set, at least for moderate M and N. 
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TABLE 3. Numerical results obtained with the prn-generator from 
Turbo Pascal for a = 2 and different functions :3 

_(t)-1 0(t) = e-t 0(t) = t (t) = t2 

EIX12_ 0.6321205 0.2325441 0.2642411 0.1708934 

approximate value 
(N = 50, M - N2) 0.6203815 0.2307061 0.2614001 0.1642161 
approximate value 

(N = 100, M - N2) 0.6293551 0.2316389 0.2614481 0.1662125 

Seemingly, the action of this prn-generator is correct. We are not aware of any 
theoretical result supporting this behavior. Since this prn-generator is a linear con- 
gruential one, it generates only a finite number of points, such that the asymptotic 
analysis we carried out does not apply. 

6. CONCLUDING REMARKS 

The above theoretical analysis as well as the computational results indicate that 
the program designer should be careful in using pseudo-random numbers for the 
simulation of stochastic differential equations. The (classical) analysis for the in- 
tegration problem, based on the Koksma-Hlawka inequality, does not carry over 
to schemes as used for the simulation of stochastic differential equations. It would 
be interesting to provide also sufficient conditions, which can easily be checked, to 
evaluate given point sets with respect to their use in quasi-Monte Carlo simulation. 
This is especially important, since in general the exact solution of a given stochastic 
differential equation is not known, such that we need some a priori information on 
the validity of the computer simulations. 

Moreover, we carried out a first analysis of the Monte Carlo simulation from the 
complexity theoretic point of view. Since by now there is a large zoo of available 
numerical schemes to solve stochastic differential equations (in the strong as well 
in the weak sense), it would be important to be able to decide which to choose, in 
dependence of the given class of input data, hence smoothness properties. 
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